Resilience-enhancement through Renewable Energy Microgrid Systems in rural El Salvador

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Fasta tillståndets fysik

Sammanfattning: This Master thesis investigates how Renewable Energy Microgrid Systems (REMS) can enhance resilience for a rural grid-connected community in El Salvador. The study examines the optimally resilient design of a grid-connected PV-Wind-Battery hybrid energy system. The optimally resilient system configuration was determined based on energy affordability, defined as minimum net present cost (NPC) and energy reliability, which was defined as a 1% maximum annual capacity shortage. The system modelling and optimisation was performed in the HOMER (Hybrid Optimisation of Multiple Energy Resources) software, where the system was optimised for different scenarios. The results of this study show that REMS can enhance resilience by lowering electricity costs for the community and thus increasing energy affordability. However, the REMS did not manage to make an equally substantial impact on energy reliability, due to the grid performance that proved to be high with few annual power outages. Besides the grid connection, the optimally resilient system was driven entirely by PV energy since it proved to be highly profitable. Wind power and battery storage were excluded from the optimally resilient system since they did not contribute to affordability and the capacity shortage limit was met already from the PV unit and the grid. Furthermore, the results show that self-sufficiency can be provided with REMS from the local energy resources, but that it is unrealistic with current costs due to the high battery prices. The study concludes that REMS should be considered as a legitimate resilience measure in rural El Salvador.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)