Trajectory Optimisation of a Spacecraft Swarm Maximising Gravitational Signal

Detta är en Master-uppsats från KTH/Optimeringslära och systemteori

Sammanfattning: Proper modelling of the gravitational fields of irregularly shaped asteroids and comets is an essential yet challenging part of any spacecraft visit and flyby to these bodies. Accurate density representations provide crucial information for proximity missions, which rely heavily on it to design safe and efficient trajectories. This work explores using a spacecraft swarm to maximise the measured gravitational signal in a hypothetical mission around the comet 67P/Churyumov-Gerasimenko. Spacecraft trajectories are simultaneously computed and evaluated using a high-order numerical integrator and an evolutionary optimisation method to maximise overall signal return. The propagation is based on an open-source polyhedral gravity model using a detailed mesh of 67P/C-G and considers the comet’s sidereal rotation. We compare performance on various mission scenarios using one and four spacecraft. The results show that the swarm achieved an expected increase in coverage over a single spacecraft when considering a fixed mission duration. However, optimising for a single spacecraft results in a more effective trajectory. The impact of dimensionality is further studied by introducing an iterative local search strategy, resulting in a generally improved robustness for finding efficient solutions. Overall, this work serves as a testbed for designing a set of trajectories in particularly complex gravitational environments, balancing measured signals and risks in a swarm scenario.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)