Evaluation of a computational method for natural fiber-reinforced plastics

Detta är en Master-uppsats från KTH/Hållfasthetslära

Sammanfattning: The importance of using natural fiber composites (NFCs) has been addressed as a substitution for synthetic fibers, such as glass and carbon fibers. This substitution contributes significantly to reducing greenhouse gas emissions, aligning with the environmental responsibilities of engineering industries. Wood fiber(WF) is one of the natural fibers (NFs) dominating the market in various businesses. As an excellent alternative to non-renewable sources, the demand for injection-molded applications using natural fiber-reinforced plastics has expanded across various sectors. Despite extensive prior research on the mechanical properties of WFs, there remains a need for a deeper understanding of the connection between fiber orientation and mechanical characteristics. This understanding is essential for developing computational methods aimed at ensuring structural integrity, cost-efficiency, and sustainability in real-world components. This study aims to evaluate coupled injection molding simulation to finite element method with mapping of fiber orientation tensor for a wood fiber composite (WFC). To achieve this, WFC’s mechanical properties and behavior under tensile loading conditions are investigated. The research methodology involves conducting uniaxial tensile testing on dog bone-shaped specimens at different fiber orientations (0 degrees, 45 degrees, and 90 degrees). Experimental data is collected, analyzed, and compared with the obtained results with numerical simulations to validate the accuracy of the models used. Additionally, the aspect ratio and volume fraction of the WFs are measured through both mathematical calculations and image analysis using MATLAB. The main contribution of this study can be summarized in two key observations. Firstly, the investigation of mechanical characteristics across different fiber orientations has revealed distinct patterns. Specimens aligned at 0 degrees exhibit noticeable differences in behavior compared to those at 45 and 90 degrees, highlighting the material's anisotropic nature. Secondly, the comparison between experimental data and computational simulations exhibits the effectiveness of the developed models. The close agreement between the two validates the accuracy of the predictive approach. Moreover, the consistent aspect ratio, volume fraction, and fiber orientation value obtained through both mathematical calculations and image analysis add credibility to the reliability of our measurements. Notably, the comparison with glass fibers (GFs) reveals that WFs exhibit considerably less breakage, highlighting their durability and potential suitability for various applications.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)