Improved U-Net architecture for Crack Detection in Sand Moulds

Detta är en Kandidat-uppsats från Högskolan i Gävle/Datavetenskap

Sammanfattning: The detection of cracks in sand moulds has long been a challenge for both safety and maintenance purposes. Traditional image processing techniques have been employed to identify and quantify these defects but have often proven to be inefficient, labour-intensive, and time-consuming. To address this issue, we sought to develop a more effective approach using deep learning techniques, specifically semantic segmentation. We initially examined three different architectures—U-Net, SegNet, and DeepCrack—to evaluate their performance in crack detection. Through testing and comparison, U-Net emerged as the most suitable choice for our project. To further enhance the model's accuracy, we combined U-Net with VGG-19, VGG-16, and ResNet architectures. However, these combinations did not yield the expected improvements in performance. Consequently, we introduced a new layer to the U-Net architecture, which significantly increased its accuracy and F1 score, making it more efficient for crack detection. Throughout the project, we conducted extensive comparisons between models to better understand the effects of various techniques such as batch normalization and dropout. To evaluate and compare the performance of the different models, we employed the loss function, accuracy, Adam optimizer, and F1 score as evaluation metrics. Some tables and figures explain the differences between models by using image comparison and evaluation metrics comparison; to show which model is better than the other. The conducted evaluations revealed that the U-Net architecture, when enhanced with an extra layer, proved superior to other models, demonstrating the highest scores and accuracy. This architecture has shown itself to be the most effective model for crack detection, thereby laying the foundation for a more cost-efficient and trustworthy approach to detecting and monitoring structural deficiencies.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)