Developing saddleback and emperor tamarin SNP set for in situ genotyping

Detta är en Master-uppsats från Uppsala universitet/Institutionen för ekologi och genetik; Uppsala universitet/Institutionen för biologisk grundutbildning

Sammanfattning: Many countries in the global south - which harbour the majority of the world’s biodiversity - face serious resource limitations and a lack of access to affordable sequencing services. Furthermore, biodiversity research and monitoring of non-model, threatened and/or cryptic species often relies on low-quality non-invasive genetic samples. In situ conservation genomics approaches optimised for field conditions and low-quality DNA can help empower local researchers and meet their needs. To do so, however, accessible and reproducible sequencing and genotyping alternatives are needed. I designed a SNP panel as a field-friendly genotyping approach for two species of Amazonian primates using both high- and low-quality DNA samples, and two different sequencing platforms, Illumina and Nanopore. I used 14 high-quality genomes to identify a set of 210 SNPs that allow for identification of species (twelve SNPs), sex (twelve SNPs) and individual identity (186 SNPs) in two species of tamarins, Leontocebus weddelli and Saguinus imperator. Primers, adapters and indexes were designed in a Genotyping-in-Thousands by sequencing approach that is compatible with both sequencing platforms. This approach is based on sequencing multiplexed PCR products of a few hundred target SNPs to genotype thousands of individuals in a single sequencing run. In an effort to make conservation genomics more accessible, the reproducible pipeline to obtain the informative SNPs is being modulated with Snakemake, a workflow management system.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)