Non-linearstates in parallel Blasius boundary layer

Detta är en Master-uppsats från KTH/Numerisk analys, NA

Författare: Muhammed Abdullah Al Ahad; [2014]

Nyckelord: ;

Sammanfattning: There is large theoretical, experimental and numerical interest in studying boundary layers, which develop around any body moving through a fluid. The simplest of these boundary layers lead to the theoretical abstraction of a so-called Blasius boundary layer, which can be derived under the assumption of a flat plate and zero external pressure gradient. The Blasius solution is characterised by a slow growth of the boundary layer in the streamwise direction. For practical purposes, in particular related to studying transition scenarios, non-linear finite-amplitude states (exact coherent states, edge states), but also for turbulence, a major simplification of the problem could be attained by removing this slow streamwise growth, and instead consider a parallel boundary layer. Parallel boundary layers are found in reality, e.g. when applying suction (asymptotic suction boundary layer) or rotation (Ekman boundary layer), but not in the Blasius case. As this is only a model which is not an exact solution to the Navier-Stokes (or boundary-layer) equations, some modifications have to be introduced into the governing equations in order for such an approach to be feasible. Spalart and Yang introduced a modification term to the governing Navier-Stokes equations in 1987. In this thesis work, we adapted the amplitude of the modification term introduced by Spalart and Yang to identify the nonlinear states in the parallel Blasius boundary layer. A final application of this modification was in determining the so-called edge states for boundary layers, previously found in the asymptotic suction boundary layer

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)