Passive gesture recognition on unmodified smartphones using Wi-Fi RSSI

Detta är en Master-uppsats från KTH/Robotik, perception och lärande, RPL

Sammanfattning: The smartphone is becoming a common device carried by hundreds of millions of individual humans worldwide, and is used to accomplish a multitude of different tasks like basic communication, internet browsing, online shopping and fitness tracking. Limited by its small size and tight energy storage, the human-smartphone interface is largely bound to the smartphones small screens and simple keypads. This prohibits introducing new rich ways of interaction with smartphones.   The industry and research community are working extensively to find ways to enrich the human-smartphone interface by either seizing the existing smartphones resources like microphones, cameras and inertia sensors, or by introducing new specialized sensing capabilities into the smartphones like compact gesture sensing radar devices.   The prevalence of Radio Frequency (RF) signals and their limited power needs, led us towards investigating using RF signals received by smartphones to recognize gestures and activities around smartphones. This thesis introduces a solution for recognizing touch-less dynamic hand gestures from the Wi-Fi Received Signal Strength (RSS) received by the smartphone using a recurrent neural network (RNN) based probabilistic model. Unlike other Wi-Fi based gesture recognition solutions, the one introduced in this thesis does not require a change to the smartphone hardware or operating system, and performs the hand gesture recognition without interfering with the normal operation of other smartphone applications.   The developed hand gesture recognition solution achieved a mean accuracy of 78% detecting and classifying three hand gestures in an online setting involving different spatial and traffic scenarios between the smartphone and Wi-Fi access points (AP). Furthermore the characteristics of the developed solution were studied, and a set of improvements have been suggested for further future work.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)