Optimization and characterization of a centrally functionalized quartz crystal microbalance sensor surface for Norovirus detection : Optimering och karakterisering av en centralt funktionaliserad kvartskristall mikrovåg sensoryta för norovirus detektion

Detta är en Master-uppsats från KTH/Skolan för teknik och hälsa (STH)

Sammanfattning: In this study a biosensor based on real time quartz crystal microbalance (QCM) monitoring is optimized and characterized for the application in the Norosensor. This biosensor is aimed to recognise, capture and amplify Norovirus (NoV). In an initial step a simplified bioassay was developed that focuses on the latter parts of the assay which consists of DNA-guided probing and amplification of the captured virus and includes the development of an amplification model assay directly to the functionalised crystal surface. A padlock probe with matching sequence to the conjugated oligonucleotide on the quartz crystal surface is used as target in the model assay. Although a number of studies have been carried out based on padlock probe ligation and rolling circle amplification (RCA) based QCM sensing, these studies utilize the entire crystal surface to capture and amplify the biomolecule. In this research work the QCM monitoring is explored on a centrally functionalised electrode surface through conjugation only at the centre of the electrode for increased mass sensitivity. Thus, allowing capture and amplification of the padlock probe only at the centre of the quartz crystal. A 14mm diameter, thermoncompensated AT-cut, nonpolished quartz crystal with a 10mm diameter gold surface coating acting as electrode was utilized for QCM measurements. The detection system is based on mass binding and amplification on the QCM to produce a negative frequency shift in the fundamental frequency of the vibrating quartz crystal. The amplification products were additionally fluorescently labelled and fluorescent microscopy images were also obtained at the end of every experiment to verify the presence or absence of DNA capture and amplification. Experimental findings show that the current flow chamber with a 15ul capacity is able to detect a specific padlock probe concentration of 1nM on a conjugated region of ~2.5mm diameter. RCA amplified the mass with an average frequency shift of -80Hz in 60mins RCA incubation time. Further, the specificity and sensitivity of the QCM system was explored. However, the system has limitations where sensor binding of reaction proteins, such as DNA ligase and BSA, to some extent is observed. The storage stability of the functionalized self-assembled monolayer (SAM) on the QCM is also observed to deteriorate and thus, is of concern. Nevertheless the combination of RCA based amplification with QCM real-time monitoring has the potential for rapid and simple, low cost detection of the Norovirus.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)