Levelised cost of green hydrogen produced at onshore wind farm sites : A case study comparing local production in Sweden and importing from Chile

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Institutionen för fysik och astronomi

Sammanfattning: Hydrogen can be produced via water electrolysis, a process powered by electricity, and is often called green hydrogen if the electricity source is renewable. The purpose of this thesis is to investigate the levelised cost of hydrogen, LCOH, from two hypothetical scenarios of green hydrogen production at onshore wind farm sites. The hydrogen is used in steel manufacturing. One scenario is set in Chile, a country with excellent wind conditions, where a large wind farm of around 1 GW supplies both a hydrogen and ammonia production. Ammonia is used as a hydrogen carrier since it is easier to transport, and the ammonia is shipped to Sweden where it is decomposed into hydrogen. The Swedish scenario includes three cases with wind farms of 28.5, 114 and 285 MW (case 1, 2 and 3), where the sites are located close to the steel plant. Both the Chilean and Swedish scenarios consist of a base case and a sensitivity analysis, all simulated in MATLAB. Parameters such as equipment efficiency and cost, levelised cost of wind energy, shipping and transportation costs, electricity price and electrolyser size were analysed to see how they affect the LCOH.  The results showed that the Chilean case both could meet the hydrogen demand of a commercial steel plant and has a lower LCOH than most Swedish scenarios. The LCOH in the base case was 2.17 €/kg H2 for the Chilean case and 6.71, 6.29 and 5.14 €/kg H2, respectively, for case 1, 2 and 3. The sensitivity analysis showed that case 3 had a similar or lower LCOH than the Chilean case when it was connected to the grid, and could sell excess wind electricity, or for electrolysers of at least 100 MW. Case 3 could supply the smallest of the suggested steel plant sizes, and it would require an around three times larger wind farm and hydrogen production site to reach the level of the Chilean case. However, the Swedish case could be preferred if other factors, such as security of supply, local connection or the exclusion of fossil fueled transports, are more important than low cost and hydrogen volume. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)