Enhancement of evaluation method of journal bearings’ performance in heavy-duty diesel engines

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: Journal bearings are being used in various locations of an internal combustion engine. They contribute to a large portion of total engine friction and lowering it means a significant contribution to CO2 reduction. Operating under heavy loads, journal bearings are often subject to mixed regime of lubrication where a part of bearing load is carried by asperities. This necessitates accurate modelling of asperities contact in order to get more realistic predication of friction losses in journal bearings contact. The evaluation method at Scania couples 3D confocal measurement of bearings’ surface roughness to a Multi-body Dynamic Analysis of journal bearings lubrication utilizing AVL EXCITE. During running-in, asperity peaks are reduced due to wear caused by metal-to-metal contact resulting in change of bearing surface profile and different contact zones in axial and circumferential direction. The aim of this thesis is to include these different contact zones and run-in wear profile of the bearing to the existing evaluation method at Scania to simulate run-in effects more precisely. Surface measurements were made on a run-in big end bearing surface at edges, center and region after oil hole. From these measurements, using the existing Local Scale Model at Scania, asperity pressure curve and flow factors were obtained, which were used to perform AVL EXCITE big end bearing simulations with multiple surface contact patches. The results show that the inclusion of multiple surface patches and run-in wear profile lead to a significant change in distribution and also magnitude of bearing performance parameters e.g. pressure, friction losses, clearance height.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)