Quantum Espionage

Detta är en Master-uppsats från KTH/Tillämpad fysik

Sammanfattning: This thesis investigates the security of optical fiber communication and demonstrates the feasibility of eavesdropping using different tapping methods and superconducting nanowire single-photon detectors (SNSPDs). Methods for surveillance against fiber intrusion are also investigated. The setups were built from mainly commercially available components and a 3D-printed sculpture and data analysis was done using open-source software. By the use of a clip-on coupler, classical systems were tapped. Transmission loss and tapping efficiency was measured to 42% and 1.5% respectively. Continuous system monitoring for tap detection using an SNSPD was performed showing that photon backscattering increased by a factor of 6 when the tap was applied. A qualitative investigation on tapping light via fiber bending was performed with signal loss/coupling efficiency registered with regards to bending diameter. Loss in a light conducting fiber and detection events in the tapping fiber increased with decreasing bend diameter. It is also shown that keeping a constant bend diameter while increasing the number of turns of the tapping fiber can increase amount of tapped light while keeping signal loss constant. Lastly, optical routers were tapped, the tapped light was analysed through a spectrum analyser yielding the lights wavelength and signal-to-noise ratio. The tapped light was then connected to a SNSPD and photon detection events was registered. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)