Weld Quality in Aluminium Alloys

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Tillämpad materialvetenskap

Författare: Rujira Ninni Deekhunthod; [2014]

Nyckelord: Weld Aluminium Alloys MIG MAG;

Sammanfattning: The aims of this project are to present an understanding in what happens when aluminium-(Al) alloys are welded, and to investigate how the Mg-, Si- and Cr-contents in AA6005A influence the weld strength and cracking susceptibility. It is known that heat from welding affects the mechanical properties (strength) of the material. Different heat cycles during welding are one of the main reasons that the strength varies. Welding can cause various phenomena such as decreased strength, porosity, deformation, cracks and corrosion. To minimize these phenomena one has to have a balance between the welding parameters, alloy composition and welding fixture setup. Al alloys are sensitive to heat from welding because they have high heat conductivity and high thermal expansion coefficient. They also deform easily when the material is heated locally. If the material is deformed too much then cracking easily occurs. This project has examined how the Mg-, Si- and Cr-contents in AA6005A, affect the welded material. A V-joint with MIG welding is used for producing weld samples. For evaluation Vickers micro-hardness, tensile testing, radiography (X-ray), LOM and SEM with EBSD and EDS was used. The evaluation focuses on mechanical properties and microstructure. The results show that small variations of Mg-, Si- and Cr-content do not have any clear effects on the welded material. The results from tensile testing show that all samples have failed in the heat affected zone (HAZ). The tensile strength of all samples are higher than standard but the yield strength are lower than standard (EN ISO 10042:2005). The lowering in hardness and tensile strength in the HAZ are believed to be a result from beta-phase (AlFeSi), lead to transformation and coarsening of the strengthening and metastable precipitate. The HAZ is wide, ranging about 20 mm from the fusion line in 5 mm thick plate. The microstructure evaluation has shown that the grain size in the HAZ has been influenced while welding.  The EDS analysis shows that a small amount of AlFeSi particles occur in the base material and HAZ but not in the weld seam. Future research is suggested to focus on understanding more about ageing, coarsening of beta-phase and precipitation of intermetallic phases.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)