Development and 3D Printing of Intrinsically Stretchable Materials for Microsupercapacitors

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: The purpose of this thesis is to develop a simple Direct Ink Writing (DIW) method for fabricating intrinsically stretchable microsupercapacitors as ef- fective on-chip energy storage devices for the emerging stretchable electron- ics. Using the printing method for fabricating intrinsically stretchable elec- tronic components remains a novel approach. In this thesis, interdigitated structures of intrinsically stretchable electrodes were printed on a stretchable thermoplastic polyurethane (TPU) substrate using a formulated ink based on Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate. Formulated elec- trolytes based on Poly(4-styrene Sulfonic Acid) and Phosphoric Acid were applied to the electrodes to complete the fabrication of microsupercapacitors. Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Elec- trochemical Impedance Spectroscopy (EIS) were used to characterize the per- formance of the devices. The stretchability of the electrodes was also mea- sured. Results from CV-measurements revealed a maximum capacitance of740 µF cm−2 at a scan rate of 5 mV s−1. GCD-measurements showed a capaci- tance of 952 µF cm−2 for the same device and an equivalent series resistance of approximately 7 kΩ. The printed electrodes exhibited a stretchability of 80%. The results show the feasibility of fabricating intrinsically stretchable energystorage devices using commercially available materials and a simple 3D print- ing technique. This method could be used as a high-throughput and low-cost method for stretchable electronics applications.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)