Object Recognition in Satellite imagesusing improved ConvolutionalRecurrent Neural Network

Detta är en Master-uppsats från Blekinge Tekniska Högskola/Institutionen för datavetenskap

Sammanfattning: Background:The background of this research lies in detecting the images from satellites. The recognition of images from satellites has become increasingly importantdue to the vast amount of data that can be obtained from satellites. This thesisaims to develop a method for the recognition of images from satellites using machinelearning techniques. Objective:The main objective of this thesis is a unique approach to recognizingthe data with a CRNN algorithm that involves image recognition in satellite imagesusing machine learning, specifically the CRNN (Convolutional Recurrent Neural Network) architecture. The main task is classifying the images accurately, and this isachieved by utilizing object classification algorithms. The CRNN architecture ischosen because it can effectively extract features from satellite images using Convolutional Blocks and leverage the great memory power of the Long Short-TermMemory (LSTM) networks to connect the extracted features efficiently. The connected features improve the accuracy of our model significantly. Method:The proposed method involves doing a literature review to find currentimage recognition models and then experimentation by training a CRNN, CNN andRNN and then comparing their performance using metrics mentioned in the thesis work. Results:The performance of the proposed method is evaluated using various metrics, including precision, recall, F1 score and inference speed, on a large dataset oflabeled images. The results indicate that high accuracy is achieved in detecting andclassifying objects in satellite images through our approach. The potential utilization of our proposed method can span various applications such as environmentalmonitoring, urban planning, and disaster management. Conclusion:The classification on the satellite images is performed using the 2 datasetsfor ships and cars. The proposed architectures are CRNN, CNN, and RNN. These3 models are compared in order to find the best performing algorithm. The resultsindicate that CRNN has the best accuracy and precision and F1 score and inferencespeed, indicating a strong performance by the CRNN. Keywords: Comparison of CRNN, CNN, and RNN, Image recognition, MachineLearning, Algorithms,You Only Look Once. Version3, Satellite images, Aerial Images, Deep Learning

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)