Evaulation of liquid-exfoliatedgraphene as additive in Ag-basedsliding contacts

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Tillämpad materialvetenskap

Sammanfattning: This master thesis work is performed at ABB Corporate Research Center inVästerås. The aim of this study is to investigate Ag:graphene composites as slidingelectrical contacts, suitable for use in e.g. tap-changers. Three different graphenematerials, all produced by a low-cost exfoliation process, are evaluated in this study. The results are compred to an ongoing work on Ag:GO (graphene oxide) composites. This material has shown very good tribological properties, however it hasbeen difficult to handle during sintering processing. The goal of this study is to geteven better tribological, electrical and mechanical properties than Ag:GO, and also todevelop a new powder-metallurgical method to produce the Ag:graphene composites.The study also investigates the influence of graphene flake size and concentration aswell as microstructure of the Ag:graphene composites. This report focuses on aninvestigation of the graphene raw material quality from the suppliers, and friction,wear and resistance analysis of the composites. This is done by using Ramanspectroscopy, SEM with EDS, LOM, tribometer tests and resistivity analysis. Raman and SEM analyses show that none of the supplied LEG materials are ofhigh-quality G (single or bilayer), but rather multi-layer graphene or even graphite.Small amounts of graphene added to Ag gave extremly low friction (μ<0.2 vs. pureAg μ~1.3, 5 N load and 5 cm/s speed). The composite manufacturing process hadcritical steps, which have to be optimized, to obtain low values of friction. Severedegassing of the composites was observed for some sampes, but the samples stillmaintained good friction values. SEM and EDS analyses of 2dfab’s wear track show abuild-up thin carbon-containing tribofilm on the Ag surface. Indicating that G ispresent, and works as a lubricant, creating good tribological properties. The resultsfrom this project may for sure be of importance for future ABB products in specificindustrial applications.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)