Anisotropic Muscle Phantoms for Shear Wave Elastography Assessment of the Levator Ani Muscle Properties

Detta är en Kandidat-uppsats från KTH/Medicinteknik och hälsosystem

Sammanfattning: Pelvic floor disorder is an emerging research area and is highlighted in many pelvic floor studies. Assessment methods for this type of injury are lacking and new methods for prevention and diagnosis are needed. Pelvic floor disorders are common among women and can lead to suffering for the patient. Levator ani muscle injuries are the main cause for pelvic floor disorders. This muscle group is an anisotropic skeletal muscle that helps support the pelvic viscera. Assessment of this muscle is difficult due to its complex geometry and location. Therefore, two muscle phantoms were constructed to mimic different properties of the levator ani muscle. The muscle phantoms provided more availability and a more controlled setting. The muscle phantoms were examined using ultrasound-based shear wave elastography which is an elastography method that can help determine the elasticity of tissue. A PVA-graphite phantom and a water-based gelatine-graphite phantom, both with fishing lines network as fibers for anisotropy, were constructed in this project. Shear wave elastography results of the PVA phantom indicated no anisotropy but visually resembled a muscle. Although not achieving anisotropy, the shear modulus of the PVA did match the shear modulus of skeletal muscle tissue. Shear wave elastography results of the gelatine phantom indicated anisotropy but visually did not resemble a muscle due to the low shear modulus of the gelatine. A 3D model of the female bony pelvis, that was provided for this project, was measured, and compared with reference value of previous study for future construction and 3D printing of the model. Results of measurements showed similarities between the 3D model and the female pelvis except for the sagittal outlet which had a deviant value. For future work, the muscle phantom can be developed by applying the complex geometry of the levator ani muscle, assembly of the muscle phantom, and the 3D rendering of the pelvis. The combination of these two parts provides a more complete phantom where shear wave elastography can be applied in the same way as in female patients.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)