Acoustic properties of a 5G Telecom Equipment Shroud Design for Noise suppression

Detta är en Master-uppsats från KTH/Marcus Wallenberg Laboratoriet MWL

Sammanfattning: As technology moves forward it has a tendency to consume more and more power that needs to be cooled by bigger and louder fans, this is especially true for the new generation of 5G radio equipment. This Master thesis is a collaboration with Ericsson and attempts to construct a shroud for containing a number of 5G radio units whilst attenuating the fan noise of the units as effectively as possible. In this project are air ducts used and at the ends silencers are created utilizing the Cremer impedance; the optimal wall impedance for damping an acoustic mode of a propagating wave. To predict the result, a simplified model in an acoustic FEM program was also explored and compared to the sound level of the constructed shroud. The finished shroud successfully reduces the noise of the radio units by 13 dB(A) while causing an increase in temperature of between 2.8°C to 5.9°C. This result was deemed to be a success and the Cremer impedance approach of reducing noise is therefore advised for future development.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)