Self-learning for 3D segmentation of medical images from single and few-slice annotation

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Training deep-learning networks to segment a particular region of interest (ROI) in 3D medical acquisitions (also called volumes) usually requires annotating a lot of data upstream because of the predominant fully supervised nature of the existing stateof-the-art models. To alleviate this annotation burden for medical experts and the associated cost, leveraging self-learning models, whose strength lies in their ability to be trained with unlabeled data, is a natural and straightforward approach. This work thus investigates a self-supervised model (called “self-learning” in this study) to segment the liver as a whole in medical acquisitions, which is very valuable for doctors as it provides insights for improved patient care. The self-learning pipeline utilizes only a single-slice (or a few-slice) groundtruth annotation to propagate the annotation iteratively in 3D and predict the complete segmentation mask for the entire volume. The segmentation accuracy of the tested models is evaluated using the Dice score, a metric commonly employed for this task. Conducting this study on Computed Tomography (CT) acquisitions to annotate the liver, the initial implementation of the self-learning framework achieved a segmentation accuracy of 0.86 Dice score. Improvements were explored to address the drifting of the mask propagation, which eventually proved to be of limited benefits. The proposed method was then compared to the fully supervised nnU-Net baseline, the state-of-the-art deep-learning model for medical image segmentation, using fully 3D ground-truth (Dice score ∼ 0.96). The final framework was assessed as an annotation tool. This was done by evaluating the segmentation accuracy of the state-of-the-art nnU-Net trained with annotation predicted by the self-learning pipeline for a given expert annotation budget. While the self-learning framework did not generate accurate enough annotation from a single slice annotation yielding an average Dice score of ∼ 0.85, it demonstrated encouraging results when two ground-truth slice annotations per volume were provided for the same annotation budget (Dice score of ∼ 0.90).

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)