The data-driven CyberSpine : Modeling the Epidural Electrical Stimulation using Finite Element Model and Artificial Neural Networks

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Every year, 250,000 people worldwide suffer a spinal cord injury (SCI) that leaves them with chronic paraplegia - permanent loss of ability to move their legs. SCI interrupts axons passing along the spinal cord, thereby isolating motor neurons from brain inputs. To date, there are no effective treatments that can reconnect these interrupted axons. In a recent breakthrough, .NeuroRestore developed the STIMO neuroprosthesis that can restore walking after paralyzing SCI using Epidural Electrical Stimulation (EES) of the lumbar spinal cord. Yet, the calibration of EES requires highly trained personnel and a vast amount of time, and the mechanism by which EES restores movement is not fully understood. In this master thesis, we propose to address this issue using modeling combined with Artificial Neural Networks (ANNs). To do so, we introduce the CyberSpine model to predict EES-induced motor response. The implementation of the model relies on the construction of a multipolar basis of solution of the Poisson equation which is then coupled to an ANN trained against actual data of an implanted STIMO user. Furthermore, we show that our CyberSpine model is particularly well adapted to extract biologically relevant information regarding the efficient connectivity of the patient’s spine. Finally, a user-friendly interactive visualization software is built.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)