Fluorescent molecules as probes for characterization of amyloid β fibrils

Detta är en Kandidat-uppsats från Linköpings universitet/Institutionen för fysik, kemi och biologi

Sammanfattning: Alzheimer’s Disease (AD) is the leading cause of dementia in the world and the World Health Organization has recognized AD as a global public health priority. One of the pathological hallmarks of AD is amyloid plaques formed from amyloid β (Aβ) fibrils. Aβ is formed when amyloid precursor protein is cleaved by secretase enzymes. Cleavage by different secretases causes Aβ to occur in different forms, mainly as 40 and 42 residue long proteins, called Aβ1-40 and Aβ1-42, where Aβ1-42 is more likely to form amyloid fibrils and is therefore considered more harmful. Fluorescent probes are currently used to stain Aβ fibrils for their detection and characterization.  We performed a literature study analysing which fluorescent probes are used for imaging of amyloid fibrils and present both the most commonly used probes but also newer probes that have been recently synthesized. Fluorescence spectra of a selection of probes were analysed in order to suggest some new combinations of probes for double-staining with the aim to be able to distinguish between Aβ1-40 and Aβ1-42. Microscopy images of the probe combinations were obtained in order to analyse the double staining results and the fluorescence intensities of the probes were plotted in different ways. All selected combinations were able to distinguish between Aβ1-40 and Aβ1-42, because of differently stained fibrils, and also displayed differences in fluorescence intensity at peak emission wavelength. The obtained results show that double-staining of amyloid fibrils with fluorescent probes can give additional information compared to staining fibrils with only one probe. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)