Towards time-resolved cryo-EM of SARS-CoV-2 replication-transcription complex and Staphylococcus aureus DNA gyrase

Detta är en Master-uppsats från Uppsala universitet/Institutionen för biologisk grundutbildning

Sammanfattning: Time-resolved cryo-EM has already provided ground-breaking discoveries in various fields, including structural biology, biochemistry, and drug development. Compared to traditional structural biology methods where mostly stabilized conformations are reconstructed, the main advantage of time-resolved cryo-EM is its ability to capture dynamic processes in biological samples at near-atomic resolution, which allows for studying biological structures as they change and interact in real-time. In this project, I focused on the expression and purification of the individual proteins of two dynamic molecular complexes – Staphylococcus aureus (S. aureus) DNA gyrase and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) replication-transcription complex – and attempted to assemble them into their functional forms for cryo-EM imaging.  Both of these complexes are interesting drug targets as they play an essential role in nucleic acid replication. The function of DNA gyrase is to modulate DNA supercoiling, facilitate DNA replication, and resolve intertwined DNA molecules. The replication-transcription complex of SARS-CoV-2 comprises, among other proteins, the RNA-dependent RNA polymerase, which, together with non-structural proteins 7 and 8, is responsible for the replication of the viral genome. There are still many questions about the underlying mechanisms of these key processes, and time-resolved cryo-EM studies will provide valuable information to advance our understanding of them. Here I present expression and purification protocols for S. aureus DNA gyrase subunits A and B and SARS-CoV-2 non-structural proteins 7, 8 and 12. DNA gyrase subunits A and B were expressed in Escherichia coli (E. coli) and purified in several steps, including affinity chromatography (His-Trap), ion exchange chromatography (IEX) and size exclusion chromatography (SEC). Despite many challenges with gyrase A precipitation, I obtained enough of both subunits for the intended cryo-EM. Different strategies to assemble them into a functional tetramer were tested but did not result in the expected outcome. The gained knowledge about the behaviour of the subunits in solution will serve as a basis for further optimization of the protocols before the assembly of the complex can be attempted again. Non-structural proteins 7 and 8 were expressed in E. coli as a polyprotein and successfully purified using His-Trap and SEC. I obtained a great amount of the polyprotein and established a protocol for its cleavage. Nsp12 was expressed using the baculovirus-insect cell expression system. The immunofluorescence assay data showed that the tested lipofection protocol works, and nsp12 is being produced in sufficient quantities. This result provides a solid base for further experiments to establish a purification method and assemble the nsp12-nsp7-nsp8 complex for cryo-EM imaging.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)