Measuring the efficiency and charge carrier mobility of organic solar cells

Detta är en Master-uppsats från Institutionen för fysik

Sammanfattning: P3HT single layer, P3HT/PCBM bilayer and P3HT/PCBM inverted bilayer devices were produced by spin coating organic layers onto ITO patterned glass in air, and clamping it with an Au coated silicon wafer, as top electrode, at the end (Figure13). Normal and inverted bilayer devices were also fabricated with and without PEDOT:PSS. All devices were divided into two groups by changing concentration of P3HT solution. The first group of devices contained 1.0 wt. % P3HT solution (P3HT in dichlorobenzene); the second group 0.56wt %. Power conversion efficiency, short circuit current, open circuit voltage, fill factor and maximum extracted power were measured on all produced devices. In contrast, all devices with 1.0wt % P3HT concentration showed better result than the devices with 0.56wt %. The highest result was obtained for P3HT single layer devices in both cases with short circuit current 56uA/cm2, open circuit voltage 0.94mV, maximum power 11.4uW/cm2 and power conversion efficiency of 0.11%. Inverted bilayer devices performed better than the non-inverted one. The devices with PEDOT:PSS got slightly better performance than the non-PEDOT:PSS used one. Charge carrier mobility measurement was done for all fabricated devices with charge extraction by linearly increasing voltage (CELIV) and dark injected space charge limited current (DI-SCLC) methods. All devices showed same magnitude of charge carrier mobility 10-5 cm2/V.s, the highest value still belongs to P3HT single layer device. The charge carrier mobility in all devices observed by DI-SCLC technique is one order of magnitude higher than by CELIV technique. This may be due to DI-SCLC method`s restriction on ohmic contacts between material and electrode.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)