Reducing cost and CO2 emissions in the gasoline to electric vehicle fleet transition

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Elektricitetslära

Sammanfattning: If you buy a new electric car today it will take on average about ten years for you to start saving money compared to just continue driving your old gasoline car. It will also take about 4 years until you start saving carbon dioxide emissions, both of this is because of new production costs and emissions. As the EU has banned producing new fossil fuel cars from 2035, it’s just a question of time before the power train in our cars will be electric. This rapid transition will lead to the older generation gasoline cars left by the road, with still usable chassis. This calls for a solution that uses this chassis but swaps out its power train for an electric one, reducing the initial cost and emission to drive electric. But is it that easy? In this mission, we take that technical question into our hands and convert a Swedish classic Volvo 340 from 1979 and give it an electric power train from 2022. We provide a detailed theory about the technology, a guide in choosing the right components, and the legal build requirements to pass the inspection. The conversion is done in an ordinary garage with standard tools and a welder. Using a small power-train with a maximum power of 30kW (40hp) and a battery size of 20kWh gave us a car with a maximum speed of 110km/h and a range of 150km. The project costed a total of 60 000 kronor, including the registration process. The technical legality and registration process went smoothly thanks to the Organisation SFRO (Sveriges fordonsbyggares riksorganisation) which takes care of the technical inspection and handles the paperwork. After one year and 10 000 km of driving and collecting data, we estimate that transitioning from gasoline to electric via a conversion compared to a new electric car reduces the economical investment return time from 10 to 2 years. And saves 8 tons of CO2. The battery used is secondhand. The second-hand market of electric car batteries, mostly from crashed or defective cars is growing and is estimated to be enough to convert the majority of old gasoline cars that are in good condition. The life length of second hand batteries in conversion is estimated to be equal to the rest of the chassis, due to the lower power requirements in conversion builds. We see that this idea has potential on a larger scale due to satisfying the criteria: Enough low complexity to do a conversion (if using common car models), lower cost and CO2 emissions then other options, supply for batteries exists, donor cars exist with chassis in good condition, market size is big enough and it’s legal to modify your car in Sweden and a few other countries.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)