Derivation of the angular momentum of primary fission fragments from isomeric yield ratio by TALYS using Python

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Tillämpad kärnfysik

Sammanfattning: The general fission process is well known and is applied in nuclear power plants all over the world. However many properties of fission fragments are still not well understood. The angular momentum distribution of fission fragments is an important property to gain a better understanding of the fission process, and that can be derived indirectly from isomeric yield ratios. The goal of this project has been to develop a script in Python that runs the nuclear reaction code TALYS with the Total Monte Carlo method to calculate the isomeric yield ratio. The script generates a matrix consisting of excitation energies and angular momenta that is provided to TALYS. One matrix corresponds to one calculation of the isomeric ratio. Thus, the dependency of the isomeric yield ratio on these matrices can be observed. After looking into the matrices, the dependencies of the isomeric yield ratios on the excitation energies and the angular momentum distribution are observed. In this project, the calculated isomeric yield ratios are compared with the experimental value obtained from an experiment conducted in August of 2019 at the IGISOL-JYFLTRAP facility in Jyväskylä, Finland. It is worth mentioning that, fission system is of Uranium-238 which was induced by a proton beam at an energy of 25 MeV. The dependency of the isomeric yield ratio (IYR) on the angular momentum and the excitation energy has been investigated. However, it has proved more difficult than expected, to deduce an estimation for the angular momentum distribution. Another finding of this project is that the two codes used, GEF and TALYS sometimes produce inconstant results.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)