Comparative study of the static and quasi-static compliance measurement procedures on industrial manipulators

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: Serial articulated industrial manipulators are increasingly used in machining applications due to their flexibility in application and their cost-effectiveness compared to conventional machinery. However, the use of industrial manipulators in machining processes that subject the robot to high loads such as in drilling is limited. The relatively low mechanical stiffness leads to position offsets from the anticipated position. Efforts have been made in the past to create manipulator calibration methods to compensate for their low stiffness and to increase their pose accuracy. The Department of Production Engineering at KTH Royal Institute of Technology defined a static and quasi-static compliance calibration procedure for industrial manipulators. Contrary to the hypothesis, the two methods produce different results in terms of the measured magnitude of Cartesian deflections. This study compares static and quasi-static compliance measurement procedures on an ABB IRB 6700-300/2.70 and aims at finding causes for the difference in the measured deflection of the manipulator between the two methods. Therefore, a literature review is performed and based on the review a novel quasi-static measurement procedure is presented. Deflections during the application of static and quasi-static loads with a frequency of less than 0.5 Hz on the manipulator are measured and compared. Differences in deflection are seen and potential causes are analyzed in several experiments. Namely, by changing parameters the resulting effects on the manipulator due to kinematic errors and dynamic effects are investigated. The results stress that unlike the expectation based on the theory of mechanics the system shows a dynamic behavior if a periodic loading with a frequency of less than 0.5Hz is applied during the quasi-static experiments. The difference in deflection is thus explained through load dissipation by damping and inertial forces during the quasi-static measurements of the novel method. This does not apply to the quasi-static measurement procedure defined by the Production Engineering department. Moreover, differences in deflection were identified due to friction and backlash acting in the transmissions system of the motors when static loads are applied in certain regions of the task space. Future work in the analysis of differences in compliance measurement procedures is encouraged to find causes for the quasi-static measurement results of the department. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)