High cycle fatigue properties of extruded 6060-T6, 6063-T6 and 6082-T6 : Influence of die lines and microstructure on fatigue in flat extruded aluminum profiles

Detta är en Master-uppsats från KTH/Materialvetenskap

Sammanfattning: Aluminum alloys are of great importance in the automotive and truck industries due to the weight savings that they can help to achieve. However, the use of such alloys in applications where they are subjected to alternating stresses requires knowledge about their fatigue behavior. Moreover, extrusion induces a strong texture and microstructural heterogeneity in the material and gives a surface with long grooves parallel to the extrusion direction (ED), so-called die lines. This anisotropy in surface conditions and microstructure may affect the fatigue properties. To investigate how die lines and microstructure affects fatigue in aluminum, the high cycle fatigue properties cycles of three peak-aged AlMgSi alloys were evaluated. Flat profiles of 6060-T6, 6063-T6 and 6082-T6 were tested in uniaxial stress (R = 0.1) in a servo-hydraulic fatigue testing machine with a constant stress amplitude. Two specimen types were tested for 6063 and 6082: one with the ED parallel to the loading direction (longitudinal), and one with the ED perpendicular to it (transverse). It was found that both 6063 and 6082 displayed anisotropy in fatigue lives, with the longitudinal orientation performing better. The anisotropy was far stronger in 6082 than in 6063. Furthermore, 6060 longitudinal displayed higher fatigue strength than 6063 longitudinal at higher stress amplitudes, but lower fatigue strength at lower amplitudes. Metallographic investigations with SEM indicated that grain boundaries of the surface-layer grains were involved in the initiation of the fatigue crack. Intergranular crack propagation and separation was observed on the fracture surfaces, especially in the surface layer. The extruded surfaces also showed evidence of intergranular crack propagation. The exact sites of crack initiation could not be found so it could not be proven conclusively that die lines were sites of crack initiation in transverse specimens, but there were some indications from metallographic and macrofractographic investigations that this was the case. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)