Predicting Road Rut with a Multi-time-series LSTM Model

Detta är en Kandidat-uppsats från Högskolan Dalarna/Institutionen för information och teknik

Sammanfattning: Road ruts are depressions or grooves worn into a road. Increases in rut depth are highly undesirable due to the heightened risk of hydroplaning. Accurately predicting increases in road rut depth is important for maintenance planning within the Swedish Transport Administration. At the time of writing this paper, the agency utilizes a linear regression model and is developing a feed-forward neural network for road rut predictions. The aim of the study was to evaluate the possibility of using a Recurrent Neural Network to predict road rut. Through design science research, an artefact in the form of a LSTM model was designed, developed, and evaluated.The dataset consisted of multiple-multivariate short time series where research was limited. Case studies were conducted which inspired the conceptual design of the model. The baseline LSTM model proposed in this paper utilizes the full dataset in combination with time-series individualization through an added index feature. Additional features thought to correlate with rut depth was also studied through multiple training set variations. The model was evaluated by calculating the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) for each training set variation. The baseline model predicted rut depth with a MAE of 0.8110 (mm) and a RMSE of 1.124 (mm) outperforming a control set without the added index. The feature with the highest correlation to rut depth was curvature with a MAEof 0.8031 and a RMSE of 1.1093. Initial finding shows that there is a possibility of utilizing an LSTM model trained on multiple-multivariate time series to predict rut depth. Time series individualization through an added index feature yielded better results than control, indicating that it had the desired effect on model performance.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)