Sequence Prediction for Identifying User Equipment Patterns in Mobile Networks

Detta är en Master-uppsats från KTH/Matematisk statistik

Sammanfattning: With an increasing demand for bandwidth and lower latency in mobile communication networks it becomes gradually more important to improve current mobile network management solutions using available network data. To improve the network management it can for instance be of interest to infer future available bandwidth to the end user of the network. This can be done by utilizing the current knowledge of real-time user equipment (UE) behaviour in the network. In the scope of this thesis interest lies in, given a set of visited radio access points (cells), to predict what the next one is going to be. For this reason the aim is to investigate the prediction performance when utilizing the All-K-Order Markov (AKOM) model, with some added variations, on collected data generated from train trajectories. Moreover a method for testing the suitability of modeling the sequence of cells as a time-homogeneous Markov chain is proposed, in order to determine the goodness-of- t with the available data. Lastly, the elapsed time in each cell is attempted to be predicted using linear regression given the prior history window of previous cell and elapsed times pairs. The results show that moderate to good prediction accuracy on the upcoming cell can be achieved with AKOM and associated variations. For predicting the upcoming sojourn time in future cells the results reveal that linear regression does not yield satisfactory results and possibly another regression model should be utilized.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)