Smart Greenhouse : A microcontroller based architecture for autonomous and remote control

Detta är en M1-uppsats från Högskolan i Halmstad/Akademin för informationsteknologi

Sammanfattning: Expensive and complex automated systems for greenhouses are frequently utilized in the horticulture industry. In parallel, smart systems for home automation has recently seen a rapid increase in popularity. This project aims to combine the climate optimization capabilities of industrial systems with the convenience of home automation systems. More specifically, this project is focused on the design and implementation of electrical and mechanical requirements of a smart greenhouse system. This involved the selection of hardware components, such as sensors, actuators and controllers. It also involved the interconnection between these components and the development of measurement and control systems to autonomously manage the greenhouse. The system is based on a WiFi-connected microcontroller. Parameters monitored include; temperature, humidity and wind-speed. Irrigation is controlled by a solenoid valve and can be scheduled to desired intervals. Ventilation and temperature optimization is done by controlling the roof-hatch with a linear actuator and control of a heater. The results demonstrate a accurate and reliable system with low power consumption. The resulting prototype can be installed in new and existing greenhouses. Functionalities can be remotely controlled and monitored by the convenience of an android application. The total cost of the components used was around 4 500 SEK. Further development could be done to enable seamless scalability with additional components and functionalities. Climate optimization by incorporation of weather forecast as a parameter could be implemented to further reduce energy consumption.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)